[Tetrahedron 67 \(2011\) 2468](http://dx.doi.org/10.1016/j.tet.2011.01.047)-[2473](http://dx.doi.org/10.1016/j.tet.2011.01.047)

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

A novel method for the synthesis of 3-fluoro-4-aryl-2-pyridone via unprecedented denitration

Xiao-Wei Wang ^{a,b}, Hai-Feng Cui ^{a,b}, Hai-Feng Wang ^b, Ying-Quan Yang ^b, Gang Zhao ^{b,}*, Shi-Zheng Zhu ^{a,}*

a Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China ^b Key Laboratory of Modern Synthetic Organic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China

article info

Article history: Received 24 November 2010 Received in revised form 13 January 2011 Accepted 18 January 2011 Available online 22 January 2011

Keywords: Cyclization Denitration Fluorine-containing 2-pyridone a,b-Unsaturated ketone

ABSTRACT

A simple and novel method to the synthesis of 3-fluoro-4-aryl-2-pyridone from a Michael-adduct of fluoronitroacetate and α , β -unsaturated ketone is reported. With (NH_4) ₂CO₃ as the N-source and TsOH as the promoted acid, a series of fluorinated-pyridones was obtained with moderate to good yields. Crown Copyright © 2011 Published by Elsevier Ltd. All rights reserved.

1. Introduction

Considerable attention has been given to the assembly of 2-pyridone core structure for many years because these structural motifs, which possess potent pharmacological and agrochemical activities are found in a very large number of biologically active natural products and related congeners,^{[1](#page-5-0)} such as the Camptothecins, 2 drug candidates active against leukemia, 2b Huperzine A, 3 a potent acetylcholine esterase inhibitor,^{3b} Lyconadin A, which was demonstrated to possess modest anticancer activity,⁴ and Merck's L-697,661,^{[5](#page-5-0)} an HIV-1 reverse transcriptase inhibitor (Fig. 1).

Numerous methods for construction of cyclic compounds from easily available starting materials have been developed.^{[6](#page-5-0)} Generally, there are two mainly synthetic approaches to elaborate 2-pyridone rings, one of which is conversion from other heterocyclics, such as the oxidation of an N-substituted pyridinium salt,^{[7](#page-5-0)} and the other is condensation from acyclic compounds using Knovenagel-type re-actions,^{[8](#page-5-0)} such as cross-condensation of cyanoacetoamide with b-dicarbonyl compounds or 2-pyrones with amides. Recently, Smith⁹ has reported an efficient protocol to annulate the 5,6-fused 2-pyridonering system, exploiting a tandem condensation of propiolamide and cyclic β -keto methyl esters in water, followed by acid-

* Corresponding authors. Tel.: $+86$ 21 54925183; fax: $+86$ 21 64166128; e-mail

0040-4020/\$ - see front matter Crown Copyright \odot 2011 Published by Elsevier Ltd. All rights reserved. doi:[10.1016/j.tet.2011.01.047](http://dx.doi.org/10.1016/j.tet.2011.01.047)

Fig. 1. Some natural products with pyridone unit.

or base-promoted intramolecular ring closure and decarboxylation. This method could be employed in the syntheses of huperzine A and analogues. However, the methods to synthesize fluorine-containing 2-pyridone core structure have been rarely reported. Schlosser 10 reported a simple procotol to synthesis 3-fluoro-2-quinolones from anilines and methyl 2-fluoro-3-methoxyprop-2-enoate via a Knorr-Effenberger-type reaction under strongly acidic conditions.

2. Results and discussion

Herein we developed a simple and novel method to synthesis of 3-fluoro-4-aryl-2-pyridone in moderate to good yields. Ketoesters (3) can be prepared via Michael addition of fluoronitroacetates (1) with α, β -unsaturated methyl ketones (2) with good yields. Then, with an ammonium salt and Brønsted acid, ketoesters (3) can be easily converted to 3-fluoro-4-aryl-2-pyridones at 100 \degree C.

Firstly, the Michael addition^{[11](#page-5-0)} of ethyl 2-fluoro-2-nitroacetate $(1a)$ and (E) -4-phenylbut-3-en-2-one $(2a)$ with some bases, such as DBU, DABCO, Na₂CO₃ etc. was examined in CH₂Cl₂ at room temperature. However, no product was observed fallaciously except that using Et $_3$ N as catalyst at 40 °C, which afforded the ketoester **3a** with about 40% yield. An advantageous method using N['], N[']-dimethylethane-1,2-diamine (4) as catalyst and 4-nitrobenzoic acid as cocatalyst could improve the yield to 85%, With this condition at hand, a lot of ketoesters 3 with various substituents were prepared with $75-85%$ yield (Table 1).

Table 1

Michael addition of fluoronitroacetates with α , β -unsaturated methyl ketones $^{\text{a}}$

^a Isolated yield of the product after column chromatography on silica gel.

Having established a good method for the synthesis of γ -fluoroketone 3, a further conversion of this product to other useful compounds was investigated. As a test reaction, the cyclization of ethyl-2-fluoro-2-nitro-5-oxo-3-phenylhexanote (3a) was initially studied with several different ammonium salt and additives in THF at varied temperatures (Table 2). When we used 10 equiv NH4OAc as ammonium salt and 0.2 equiv TsOH as additives at different temperatures, it was found that when the reaction temperature was up to the bp, the desired product (5a) was provided in higher yield (56%, Table 2, entries $1-3$). While changing the amount of NH4OAc to 5 or 15 equiv, the desired product was obtained in 52% and 55% yield, respectively (Table 2, entries 4 and 5). No reaction was observed when using $NH₄Cl$ as ammonium salt, but the yield could increased to 66% with $(NH₄)₂CO₃$ (Table 2, entries 6 and 7).

Table 2

Optimization of the cyclization conditions ϵ

 a Unless otherwise noted, the reaction was carried out with 3 (0.1 mmol) in THF (1.0 mL) and 50 mg of MS 4 Å was used as additive.

Yield of the isolated product after column chromatography on silica gel.

Contrastively, if there was no additive or using $Et₃N$ as the additive, no reaction was observed (Table 2, entries 8 and 9). When reviewing the type and amount of Brønsted acid, we found that 2 equiv of TsOH was the optimal condition (Table 2, entries 10 and 11). Whenever CF_3COOH , CF_3SO_3H or p-nitrobenzoic acid was used, no better result was observered (Table 2, entries $12-14$).

Next, we examined the influence of solvent on the isolated yield. Slightly lower yields were obtained with the use of chlorine-containing solvents, such as CHCl₃ and ClCH₂CH₂Cl (Table 3, entries 4 and 5). When $CCl₄$ was used as solvent, no product was observed (Table 3, entry 6). If we changed the solvent into ether, such as PhOMe and 1,4-dioxane, the yield were also around 60% (Table 3, entries 2 and 7). Fortunately, when toluene or xylene was used as solvent and the reaction temperature was up to 100 $^{\circ}$ C, the yield could increased to more than 85% (Table 3, entries 8 and 9). However, DMF being employed as solvent led to lower yield (Table 3, entry 10). Thus, the optimum reaction condition for the transformation was that with 10 equiv of $(NH_4)_2CO_3$ and 2 equiv of TsOH in xylene at 100 \degree C.

With the optimized condition at hand, a series of 2-fluoro-2 nitro-5-oxo-3-arylhexanote $(3a-m)$ for the cyclization reaction

Table 3

Screening of solvents for the cyclization conditions^a

Unless otherwise noted, the reaction was carried out with 3 (0.1 mmol) in solvent (1.0 mL) using 4 Å MS (50 mg) as the additive.

^b Isolated yield of the product after column chromatography on silica gel.

 c The reaction was conducted at 100 \degree C.

were examined (Table 4). Generally, most of the examined substrates with different R^1 group, including electron withdrawing, electron donating or heterocycle substitution, participated in the reaction smoothly and the reaction completed in 1-2 days to provide the desired products with more than 80% yields (Table 4, entries 1–7, 10, and 13). When the R^1 group was 2-naphthyl or 4-nitrophenyl, the yield slightly declined to 69% and 76%, respectively (Table 4, entries 8 and 9). Unfortunately, when the R^1 group was *n*-butyl, no reaction was observed (Table 4, entry 12).

Based on the experimental results, two plausible mechanisms for the cyclization reaction of 3 were showed in [Scheme 1.](#page-3-0) In path A,

Table 4

Scope of the cyclization reaction to synthesize 3-fluoro-4-aryl-2-pyridone^a

Table 4 (continued)

 $^{\rm a}$ Unless otherwise noted, the reaction was carried out with **3** (0.1 mmol) in THF (1.0 mL) using 4 Å MS (50 mg) as the additive.

b Isolated yield of the product after column chromatography on silica gel.

Scheme 1. Two plausible mechanisms for the cyclization reaction of 3.

3 reacted with $(NH_4)_2CO_3$ to give imine A', which was easily isomerized to enamine. After an intramolecular amidation, the intermediate Bʹ was obtained and then converted to 5 with a denitrogroup step. In path B, an amide was obtained firstly and reacted with ketone to give intermediate B. After an isomerization and denitro-group reaction, the desired product was then obtained.

3. Conclusion

In summary, we have developed a novel and simple method to synthesize a series of monofluorinated pyridones via intramolecular cyclization/denitro-group reactions. By using commercial available ammonium salt (($NH₄$)₂CO₃) and Brønsted acid (TsOH), the desired products were obtained with up to 89% yields in xylene at 100 $^{\circ}$ C. Further application of this reaction is in progress in our laboratory.

4. Experimental

4.1. General

 1 H and 13 C NMR spectra were recorded at 300 and 100 MHz, respectively, with TMS as the internal standard. 19F NMR spectra were recorded at 282 MHz with CFCl₃ as the external standard. IR spectra were recorded in cm⁻¹. Melting points were uncorrected.

All solvents were distilled prior to use unless otherwise noted. All reactions sensitive to moisture or oxygen were conducted under an atmosphere of nitrogen or argon.

4.2. General procedure for the preparation of 3-fluoro-4-aryl-2-pyridone (5)

Under an atmosphere of argon, a solution of compound (3) (0.1 mmol) , TsOH $(0.2 \text{ mmol}, 34 \text{ mg})$, $(NH₄)₂CO₃$ (1 mmol, 96 mg), and 4 Å MS (40 mg) in xylene (1.0 mL) was heated at 100 °C for appropriate times. When the reaction was completed (monitored by TLC), the reaction system was cooled to room temperature. After removal of the solvent under reduced pressure, the crude product was purified directly by column chromatography on silica gel (hexanes/EtOAc $=$ 2/1) to afford the desired products.

4.2.1. 3-Fluoro-6-methyl-4-phenylpyridin-2(1H)-one $(5a)$. Yield: 89%; yellowish brown solid; mp: 198-199 °C, IR (CH2Cl2, film): 3402, 2165, 1661, 1497, 1183, 1126, 1046, 749, 692 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): $\delta = 13.23$ (br s, 1H), 7.58 (d, J=7.8 Hz, 2H), 7.51-7.48 (m, 3H), 6.14 (d, J=5.4 Hz, 1H), 2.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃/CD₃OD): 157.9 (d, J=27.1 Hz), 146.4 (d, $J=244.2$ Hz), 139.4 (d, $J=5.8$ Hz), 136.3 (d, $J=9.0$ Hz), 132.9, 129.2128.5, 128.4(d, J=6.7 Hz), 106.4, 17.9; ¹⁹F NMR (CDCl₃):

 $\delta = -146.0$ (s, 1F); MS (ESI) (m/z): 226 (M+Na⁺); HRMS calcd for C12H10NFO: 203.0746, found: 203.0747.

4.2.2. 4-(4-Bromophenyl)-3-fluoro-6-methylpyridin-2(1H)-one (**5b**). Yield: 86%; yellowish brown solid; mp: 238–239 °C, IR (CH₂Cl₂, film): 3411, 2853, 1670, 1477, 1182, 1144, 1049, 761, 659 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ =13.25 (br s, 1H), 7.53 (d, $J=7.8$ Hz, 2H), 7.38 (d, $J=7.2$ Hz, 2H), 6.02 (d, $J=4.8$ Hz, 1H), 2.35 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): 158.7 (d, J=24.6 Hz), 146.4 (d, $J=244.7$ Hz), 140.0 (d, $J=6.1$ Hz), 135.1 (d, $J=8.7$ Hz), 132.0, 130.2 (d, $J=3.7$ Hz),123.8, 106.4, 18.8; ¹⁹F NMR (CDCl₃): $\delta = -145.0$ (s, 1F); MS (ESI) $(m|z)$: 306 $(M+Na^+)$; HRMS calcd for C₁₂H₉NBrFO: 280.9852, found: 280.9857.

4.2.3. 3-Fluoro-4-(4-methoxyphenyl)-6-methylpyridin-2(1H)-one (**5c**). Yield: 82%; yellowish brown solid; mp: 234–235 °C, IR (CH₂Cl₂, film): 3417, 2918, 1665, 1451, 1182, 1145, 1031, 762, 664 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ =13.11 (br s, 1H), 7.56 (d, $J=6.0$ Hz, 2H), 7.02 (d, $J=6.6$ Hz, 2H), 6.15 (d, $J=4.8$ Hz, 1H), 3.90 (s, 3H), 2.43 (s, 3H); 13 C NMR (100 MHz, CDCl₃): 158.7 (d, J=25.4 Hz), 146.4 (d, J=228.8 Hz), 139.4 (d, J=6.7 Hz), 135.6 (d, J=8.1 Hz), 130.1, 130.1, 125.3, 114.2, 106.1, 55.4, 18.8; ¹⁹F NMR (CDCl₃): $\delta = -146.3$ (s, 1F); MS (ESI) (m/z) : 256 (M+Na⁺); HRMS calcd for C₁₃H₁₂NFO₂: 233.0852, found: 233.0853.

4.2.4. 4-(2-Chlorophenyl)-3-fluoro-6-methylpyridin-2(1H)-one (**5d**). Yield: 85%; yellowish brown solid; mp: 213–214 °C, IR (CH₂Cl₂, film): 3420, 2852, 1654, 1468, 1183, 1148, 1048, 756, 660 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ =13.24 (br s, 1H), 7.50 (d, $J=8.7$ Hz, 1H), 7.35 (t, $J=7.2$ Hz, 3H), 5.99 (d, $J=4.2$ Hz, 1H), 2.40 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): 157.4 (d, J=24.6 Hz), 145.5 (d, $J=245.5$ Hz), 138.5 (d, $J=6.8$ Hz), 133.8 (d, $J=11.6$ Hz), 131.7, 131.4, 129.4, 129.2, 129.0, 125.8, 106.1, 17.7; ¹⁹F NMR (CDCl₃): $\delta = -139.9$ (s, 1F); MS (ESI) (m/z) : 260 $(M+Na^+)$; HRMS calcd for C₁₂H₉NClFO: 237.0357, found: 237.0353.

4.2.5. 4-(3-Chlorophenyl)-3-fluoro-6-methylpyridin-2(1H)-one (**5e**). Yield: 83%; yellowish brown solid; mp: 205–206 °C, IR (CH₂Cl₂, film): 3405, 2923, 1669, 1455, 1184, 1145, 1047, 759, 690 cm⁻¹; ¹H NMR (300 MHz, DMSO-d₆): δ =12.45 (br s, 1H), 7.88 (s, 1H), 7.80 (s, 3H), 6.41 (d, J=5.4 Hz, 1H), 2.46 (s, 3H); ¹³C NMR $(100$ MHz, CDCl₃): 157.7 (d, J=25.4 Hz), 146.4 (d, J=245.8 Hz), 139.7 $(d, J=6.7 \text{ Hz})$, 134.8 $(d, J=8.6 \text{ Hz})$, 134.6 $(d, J=11.4 \text{ Hz})$, 129.9, 128.5, 128.5 (d, J=3.6 Hz), 126.8, 126.7, 105.8, 18.0; ¹⁹F NMR (DMSO- d_6): $\delta = -145.1$ (s, 1F); MS (ESI) (m/z): 260 (M+Na⁺); HRMS calcd for C12H9NClFO: 237.0357, found: 237.0350.

4.2.6. 4-(4-Chlorophenyl)-3-fluoro-6-methylpyridin-2(1H)-one (**5f**). Yield: 82%; yellowish brown solid; mp: 212–214 °C, IR (CH2Cl2, film): 3405, 2173, 1665, 1493, 1183, 1110, 1048, 768, 678 cm⁻¹; ¹H NMR (300 MHz, DMSO-d₆): δ =12.18 (br s, 1H), 7.62–7.55 (m, 4H), 6.12 (d, J=5.7 Hz, 1H), 2.20 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6): 156.6 (d, J=26.4 Hz), 146.6 (d, J=223.7 Hz), 140.6 (d, J=3.4 Hz), 134.5, 133.2 (d, J=9.0 Hz), 132.3, 130.8 (d, J=3.8 Hz), 129.3, 129.2, 103.7, 18.6; ¹⁹F NMR (DMSO-d₆): δ =-145.6 (s, 1F); MS (ESI) (m/z) : 260 (M+Na⁺); HRMS calcd for C₁₂H₉NClFO: 237.0357, found: 237.0352.

4.2.7. 3-Fluoro-4-(4-fluorophenyl)-6-methylpyridin-2(1H)-one (**5g**). Yield: 84%; yellowish brown solid; mp: 189–190 °C, IR (CH2Cl2, film): 3398, 2924, 1665, 1465, 1199, 1147, 1041, 769, 682 cm⁻¹; ¹H NMR (300 MHz, DMSO-d₆): δ =12.16 (br s, 1H), $7.66 - 7.62$ (m, 2H), $7.37 - 7.32$ (m, 2H), 6.12 (d, $J = 5.1$ Hz, 1H), 2.20 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6): 163.3 (d, J=245.6 Hz), 156.6 (d, J=25.3 Hz), 146.5 (d, J=242.1 Hz), 140.5, 133.4 (d, J=8.8 Hz), 131.3 (d, J=3.7 Hz), 116.1 (d, J=21.6 Hz), 104.0, 18.6; ¹⁹F NMR (DMSO-d₆): $\delta = -145.0$ (s, 1F), -111.8 (m, 1F); MS (ESI) (m/z): 244 (M+Na⁺); HRMS calcd for C12H9NF2O: 221.0652, found: 221.0656.

4.2.8. 4-(Benzo[d][1,3]dioxol-5-yl)-3-fluoro-6-methylpyridin-2(1H) one (**5h**). Yield: 85%; yellowish brown solid; mp: 225–226 °C, IR (CH₂Cl₂, film): 3434, 2921, 1659, 1456, 1188, 1160, 1032, 761, 662 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ =7.08 (d, J=8.1 Hz, 2H), 6.91 $(d, J=7.8 \text{ Hz}, 2H)$, 6.14 $(d, J=5.1 \text{ Hz}, 1H)$, 6.04 (s, 2H), 2.35 (s, 3H); ¹³C NMR(100 MHz, CDCl₃): 157.9 (d, J=25.4 Hz), 148.6, 148.0, 146.5 (d, $J=242.9$ Hz), 139.1 (d, $J=5.6$ Hz), 135.9 (d, $J=8.9$ Hz), 126.4, 122.8 (d, $J=4.3$ Hz), 108.9, 108.4, 106.3, 101.5, 18.2; ¹⁹F NMR (CDCl₃): $\delta = -145.9$ (s, 1F); MS (ESI) (m/z): 270 (M+Na⁺); HRMS calcd for $C_{13}H_{10}NFO_3$: 247.0645, found: 247.0642.

4.2.9. 3-Fluoro-6-methyl-4-(4-nitrophenyl)pyridin-2(1H)-one (**5i**). Yield: 76%; yellowish brown solid; mp: 251–252 °C, IR (CH₂Cl₂, film): 3409, 2190, 1673, 1519, 1184, 1119, 1048, 749, 696 cm⁻¹; ¹H NMR (300 MHz, DMSO- d_6): δ =12.29 (br s, 1H), 8.34 (d, J=6.0 Hz, 2H), 7.85 (d, J=8.4 Hz, 2H), 6.18 (d, J=5.4 Hz, 1H), 2.22 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6): 156.5 (d, J=26.4 Hz), 146.4 (d, J=243.0 Hz), 141.1, 140.0, 132.4 (d, J=8.6 Hz), 130.4 (d, J=3.7 Hz), 129.1, 124.2, 103.4, 18.7; ¹⁹F NMR (DMSO-d₆): $\delta = -144.1$ (s, 1F); MS (ESI) (m/z): 271 $(M+Na^+)$; HRMS calcd for C₁₂H₉N₂FO₃: 248.0597, found: 248.0595.

4.2.10. 3-Fluoro-6-methyl-4-(naphthalen-2-yl)pyridin-2(1H)-one (**5j**). Yield: 69%; yellowish brown solid; mp: 209–210 °C, IR (CH₂Cl₂, film): 3425, 2854, 1657, 1475, 1197, 1118, 1048, 762, 652 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ =12.18 (br s, 1H), 8.17 (s, 1H), 8.05–7.97 (m, 3H), 7.69 (d, $J=8.4$ Hz, 1H), 7.59 (t, $J=4.2$ Hz, 2H), 6.25 (d, $J=5.7$ Hz, 1H), 2.40 (s, 3H); ¹³C NMR(100 MHz, DMSO-d₆): 161.4 (d, J=26.4 Hz), 151.5 (d, $J=230.0$ Hz), 145.2 (d, $J=6.0$ Hz), 139.1 (d, $J=9.1$ Hz), 138.0 (d, J=4.4 Hz), 135.7, 133.6, 133.4, 133.3, 132.8, 132.3, 131.9, 131.1, 131.1, 109.0, 23.4; ¹⁹F NMR (CDCl₃): $\delta = -145.9$ (s, 1F); MS (ESI) (m/z): 529 $(2M+Na^{+})$; HRMS calcd for C₁₆H₁₂NFO: 253.0903, found: 253.0906.

4.2.11. 3-Fluoro-4-(furan-2-yl)-6-methylpyridin-2(1H)-one (**5k**). Yield: 81%; yellowish brown solid; mp: 209–210 °C, IR (CH₂Cl₂, film): 3435, 2925, 1666, 1490, 1203, 1145, 1049, 763, 582 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ =8.09 (s, 1H), 7.51 (t, $J=3.0$ Hz, 1H), 7.03 (d, $J=1.8$ Hz, 1H), 6.96 (d, $J=5.1$ Hz, 1H), 2.72 (s, 3H); ¹³C NMR(100 MHz, CDCl₃/CD₃OD): 161.4 (d, J=24.7 Hz), 148.5 $(d, J=244.9 \text{ Hz})$, 143.7 $(d, J=5.9 \text{ Hz})$, 136.5, 129.4 $(d, J=8.1 \text{ Hz})$, 119.0, 129.2, 118.9, 116.4, 105.1, 17.9; ¹⁹F NMR (CDCl₃): δ = -141.7 (s, 1F); MS (ESI) (m/z) : 216 (M+Na⁺); HRMS calcd for C₁₀H₈NFO₂: 193.0539, found: 193.0535.

4.3. General procedure for the preparation of ketoester (3)

A solution of α , β -unsaturated methyl ketones (2) (0.1 mmol), fluoronitroacetates (1) (0.15 mmol), $N^{'}$, N -dimethylethane-1,2-diamine (4) (20 mol %) and 4-nitrobenzoic acid (20 mol %) in $CH₂Cl₂$ (1.0 mL) was reacted at room temperture for appropriate times. After removal of the solvent under reduced pressure, the crude product was purified directly by column chromatography on silica gel (hexanes/EtOAc= $5/1$) to afford the desired products.

Acknowledgements

This research was supported by the National Natural Science Foundation of China (No.21032006, 20172064), the QT Program, Shanghai Natural Science Council.

Supplementary data

Supplementary data associated with this article can be found in the online version, at [doi:10.1016/j.tet.2011.01.047.](http://dx.doi.org/doi:10.1016/j.tet.2011.01.047) These data

include MOL files and InChiKeys of the most important compounds described in this article.

References and notes

- 1. (a) Du, W. Tetrahedron 2003, 59, 8649; (b) Jiang, H.; Luo, X.; Bai, D. Curr. Med. Chem. 2003, 10, 2231; (c) Misra, R.; Pandey, R. C.; Silverton, J. V. J. Am. Chem. Soc. 1982, 104, 4478.
- 2. (a)Wall, M. E.;Wani, M. C.; Cook, C. E.; Palmer, K. H.; McPhail, A. T.; Sim, G. A. J. Am. Chem. Soc. 1966, 88, 3888; (b) Wall, M. E. Med. Res. Rev. 1998, 18, 299.
- 3. (a) Kozikowski, A. P.; Campiani, G.; Sun, L.-Q.; Wang, S.; Saxena, A.; Doctor, B. P. J. Am. Chem. Soc. 1996, 118, 11357; (b) Campiani, G.; Kozikowski, A. P.; Shaomeng, W.; Liu, M.; Nacci, V.; Saxena, A.; Doctor, B. P. Bioorg. Med. Chem. Lett. 1998, 8, 1413.
- 4. Kobayashi, J.; Hirasawa, Y.; Yoshida, N.; Morita, H. J. Org. Chem. 2001, 66, 5901.
- 5. Parreira, R. L. T.; Abrahao, O.; Galembeck, S. E. Tetrahedron 2001, 57, 3243.
- 6. Recent methods: (a) Yermolayev, S. A.; Gorobets, N. Y.; Desenko, S. M. J. Comb. Chem. 2009, 11, 44; (b) Li, S.; Wang, S. J. Heterocycl. Chem. 2008, 45, 1875; (c) Imase, H.; Noguchi, K.; Hirano, M.; Tanaka, K. Org. Lett. 2008, 10, 3563; (d) Liu, J.; Liang, D.; Wang, M.; Liu, Q. Synthesis 2008, 3633; (e) Chen, L.; Zhao, Y.-L.; Liu, Q.; Cheng, C.; Piao, C.-R. *J. Org. Chem. 2007, 72, 9259; (f) Zh*ang, R.; Zhang, D.;
Guo, Y.; Zhou, G.; Jiang, Z.; Dong, D. *J. Org. Chem. 2008, 73, 9504; (g) X*iang, D.; Wang, K.; Liang, Y.; Zhou, G.; Dong, D. Org. Lett. 2008, 10, 345; (h) Pan, W.; Dong, D.; Wang, K.; Zhang, J.; Wu, R.; Xiang, D.; Liu, Q. Org. Lett. 2007, 9, 2421; (i) Tsai,

T.; Chung, W.; Chang, J.; Hsu, R.; Chang, N. Tetrahedron 2007, 63, 9825; (j) Boisse, T.; Rigo, B.; Millet, R.; Henichart, J.-P. Tetrahedron 2007, 63, 10511; (k) Pemberton, N.; Jakobsson, L.; Almqvist, F. Org. Lett. **2006**, 8, 935; (1) Kondo, T.; Nomura, M.; Ura, Y.; Wada, K.; Mitsudo, T. Tetrahedron Lett. 2006, 47, 7107; (m) Duong, H. A.; Louie, J. J. Organomet. Chem. 2005, 690, 5098; (n) Duong, H.; Cross, M.; Louie, J. J. Am. Chem. Soc. 2004, 126, 11438; (o) Paulvannan, K.; Chen, T. J. Org. Chem. 2000, 65, 6160; (p) Brun, E.; Gil, S.; Mestres, R.; Parra, M. Synthesis 2000, 273; (q) Alberola, A.; Calvo, L.; Ortega, A.; Carmen Sanudo Ruiz, M.; Yustos, P. J. Org. Chem. 1999, 64, 9493; (r) Chandra Sheker Reddy, A.; Narsaiah, B.; Venkataratnam, R. Tetrahedron Lett. 1996, 37, 2829; (s) Takaoka, K.; Aoyama, T.; Shioiri, T. *Tetrahedron Lett.* **1996,** 37, 4973; (t) Zhang, S.; Liebeskind, L. J. *Org.
<i>Chem.* **1999,** 64, 4042; (u) Furukawa, I.; Fujisawa, H.; Kawazome, M.; Nakai, Y.; Ohta, T. Synthesis 1998, 1715; (v) Ghosez, L.; Jnoff, E.; Bayard, P.; Sainte, F.; Beaudegnies, R. Tetrahedron 1999, 55, 3387; (w) Grosche, P.; Holtzel, A.; Walk, T.; Trautwein, A.; Jung, G. Synthesis 1999, 1961; (x) Katritzky, A.; Belyakov, S.; Sorochinsky, A.; Henderson, S.; Chen, J. J. Org. Chem. **1997**, 62, 6210; (y) Bar-
luenga, J.; Tomas, M.; Suarez, A.; Gotor, V. Tetrahedron Lett. **1988**, 29, 4855; (z) Deodhar, K.; Kekare, M.; Pednekar, S. Synthesis 1985, 328; (aa) Hong, P.; Yamazaki, H. Synthesis 1977, 50.

- 7. (a) Decker, H. Chem. Ber. 1892, 25, 443; (b) Mohrle, H.; Weber, H. Tetrahedron 1970, 26, 2953.
- 8. Jones, G. Org. React. 1967, 15, 204.
- 9. Smith, A.; Atasoylu, O.; Beshore, D. Synlett 2009, 2643.
- 10. Volle, J.; Mävers, U.; Schlosser, M. Eur. J. Org. Chem. 2008, 2430.
- 11. Cui, H.; Yang, Y.; Wang, X.; Chai, Z.; Li, P.; Cai, Y.; Zhu, S.; Zhao, G. Tetrahedron 2011, 67, 312.